

Teen Substance Use

Insights From the ABCD Study®

Most youth practice safe and healthy behaviors. However, some young people are at an increased risk of using substances and other behaviors that can lead to poor health outcomes. The Adolescent Brain Cognitive DevelopmentSM (ABCD) Study is the largest long-term study of brain development and child health in the United States. Expert researchers in these fields have studied the factors that may increase or decrease risk for substance use among teens. They've also studied the impact of youth substance use on future physical, mental, and emotional health. Here's what the ABCD Study has learned about youth substance use so far.

Substance Use Quick Stats

Although substance use among youth is a significant public health problem, **most youth don't use substances**.

Percent of Youth Ages 12 to 17 Using Any Substance in the Past Month, 2024

13.3%

According to the Substance Abuse and Mental Health Services Administration (SAMHSA), among U.S. youth ages 12 to 17 in 2024:

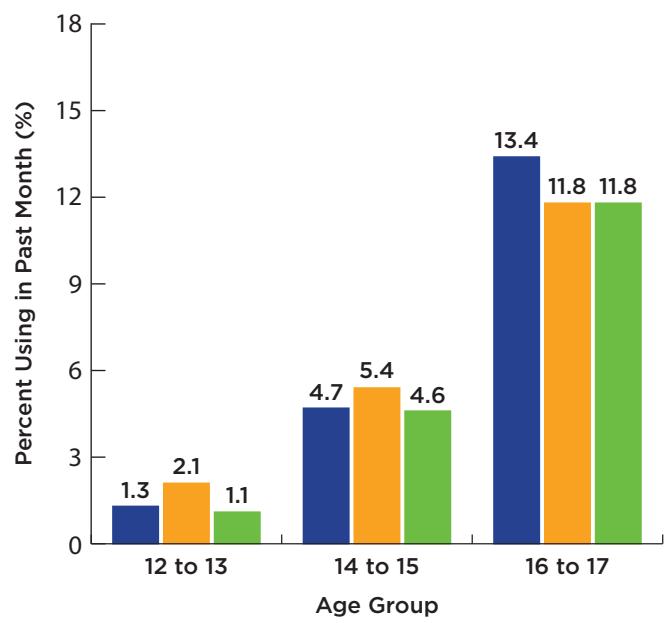
An estimated

6.6% (1.7 million)

consumed **alcohol** in the previous month.

6.6% (1.7 million)

used a **tobacco product or nicotine vape** in the previous month.


6.0% (1.6 million)

used **cannabis** in the previous month.

Teen substance use increases with age.

Percent of Youth Using Substances in the Past Month, by Age, 2024

Alcohol

About 17% of participants in the ABCD Study reported drinking alcohol outside of a religious event at least once by age 9 or 10. The average age at first sip was between 7 and 8 years old. In many cases, alcohol was provided by a parent or a guardian.

So far, youth in the ABCD Study were more likely to try alcohol if they:

- ▶ Believe that trying alcohol once or twice isn't harmful.
- ▶ Have peers who drink alcohol or are curious about it.
- ▶ Act on sudden urges (impulsivity).
- ▶ Often experience feelings such as sadness, fear, or shyness.

Youth who think that drinking alcohol will lead to positive experiences, like feeling happy or having a fun time, are more likely to drink it. But those who think that alcohol will lead to negative outcomes, like tripping and falling, are less likely to drink it. At age 13, more youth believed alcohol would lead to positive experiences than when those same youth were 11 years old.

What are the impacts of underage drinking?

Increased risk of:

Poor perception of movement, depth, and distance, which are important for tasks such as driving

Depression

Memory problems

Thoughts of suicide

Violence

Unplanned pregnancy

Sexually transmitted infections

Inability to control emotions

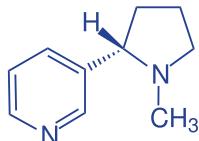
Challenges with problem solving, planning, and multitasking

Caffeine

Did you know that caffeine is the most widely used psychoactive (mind-altering) substance in the world?

Caffeine is a central nervous system stimulant found in products such as coffee, some sodas and teas, and energy drinks. It increases the levels of certain chemicals in the brain and can increase alertness and attention.

A study of 9- to 10-year-old youth from the ABCD Study showed that caffeine consumption in childhood **may negatively affect:**


- ▶ Memory
- ▶ Sleep
- ▶ The tendency to act on sudden urges (impulsivity)
- ▶ How quickly the brain can take in information and respond to it

Youth who consume caffeine may be more likely to try other substances.

Nicotine

Nicotine is the highly addictive chemical found in tobacco. Most nicotine use starts before age 18.

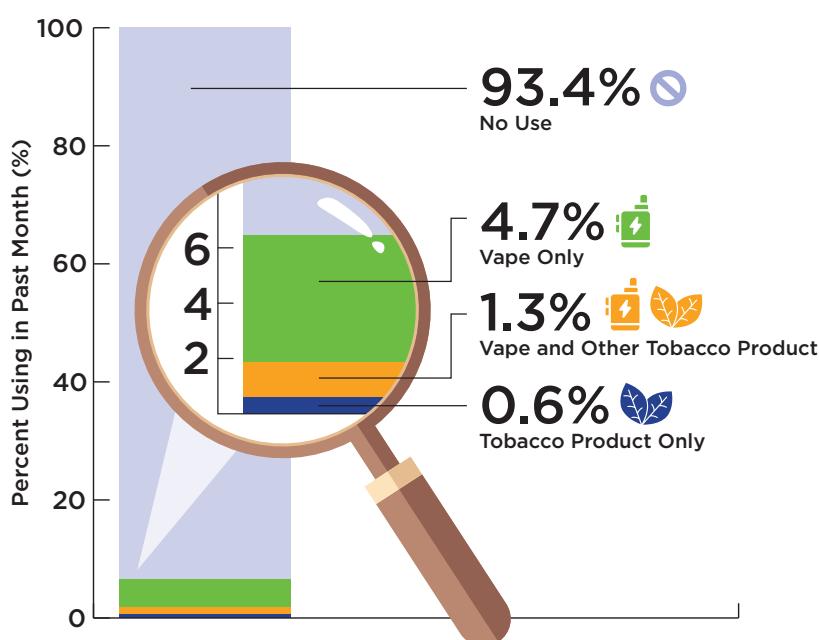
About **10.1%**
(1.58 million)
of high school
students currently
use products that
contain nicotine.

What factors and behaviors may increase the risk of starting nicotine use?

- Difficulty controlling actions and reactions, such as angry outbursts, fighting, or stealing
- The tendency to search for thrilling or dangerous activities (sensation seeking)
- Peers who use tobacco
- The belief that there is little or no harm to nicotine use

Youth who use tobacco products during middle childhood (ages 9 to 10) tend to have worse reading and listening comprehension than youth who don't use tobacco. However, why or how these skills are connected to tobacco use isn't clear, as several factors play a role in developing these skills. Other factors linked with tobacco use are also connected to challenges with reading and listening comprehension.

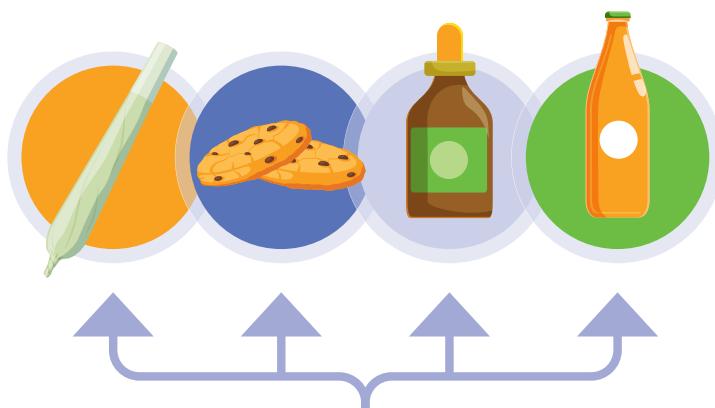
E-cigarettes and Vapes

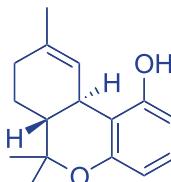

E-cigarettes, which are also known as vapes, use battery power to heat a liquid solution into vapor. People inhale the vapor, which usually contains nicotine, flavorings, and other potentially harmful chemicals. Some vape products contain cannabis.

There are many types of e-cigarettes. Some look like cigars or pipes while others look like USB flash drives, pens, or highlighters.

**According to SAMHSA, 75%
of adolescents (ages 12 to 17)
who consume nicotine only use
e-cigarette products.**

Since 2014, adolescents in the United States have used e-cigarettes more than any other nicotine product. **However, the same report showed that 93.4% of adolescents don't use nicotine at all!**




Percent of Youth Ages 12 to 17 Using Tobacco Products in the Past Month, 2024

Cannabis

Cannabis comes from the dried parts of several varieties of the *Cannabis* plant. It contains many different compounds, including:

- ▶ **Tetrahydrocannabinol (THC):** Can temporarily alter a person's mood, thoughts, or perception (intoxicating).
- ▶ **Cannabidiol (CBD):** Non-intoxicating, but little is known about the impact of CBD on youth. CBD products are widely available but not well-regulated, and often contain impurities, including THC.

Cannabis comes in several forms, including cigarette-like joints, edibles (like gummies or baked goods), oils, and beverages. Some vapes contain THC or CBD.

The ABCD Study and other studies have shown connections between cannabis use and psychosis symptoms, such as delusions, suspiciousness, social withdrawal, and a decline in personal hygiene.

- ▶ Using cannabis for the first time may increase the risk of these symptoms, especially in youth with a family history of psychosis.
- ▶ Cannabis may also be a form of self-medication for those already experiencing problems with their mental health.

Factors that increase risk for cannabis use during adolescence are:

- ▶ Having peers who use cannabis
- ▶ A lack of interest in or enjoyment from life
- ▶ Believing it would be easy to obtain cannabis

U.S. youth undergo substance use disorder treatment more often for cannabis than for other substances.

Cannabis Use Disorder

Cannabis use disorder is the inability to stop using cannabis even when it's causing health and social problems. The risk of developing cannabis use disorder is greater in people who start using the substance before adulthood, but genetics also plays a role in risk.

Tips for Parents to Prevent Youth Substance Use

Talk with your teens about how what they see in media or online doesn't always reflect what other teens are really doing.

Most teens don't regularly use substances, but they may *think* that their peers do.

Talk with your kids early and often about substance use.

Rates of teen substance use increase with age, and it's important to talk with youth *before* they consider trying substances.

Ask your children about where they are going, whom they hang out with, and what they are doing.

Teens who believe that their parents are paying attention to them are less likely to use substances.

Teach your children how to manage stress in a positive way.

Coping strategies like writing in a journal, spending time outdoors, or exercising may be protective against substance use.

Encourage your kids to get involved in school activities and connect with teachers or coaches.

Teens who feel supported by their teachers and feel a sense of belonging at school are less likely to use substances.

Set clear and thoughtful rules for your teens that prohibit substance use and enforce them with warmth and support.

Engaged parenting styles are protective against early adolescent substance use.

Restrict access to substances at home.

Youth in the ABCD Study were less likely to try alcohol if they didn't have access to it at home.

These studies show youth experiences with substance use. They don't show if or how one thing causes another. These studies included data from study participants when they were 9 to 15 years old. Many things could affect these findings, which may also change over time. More research is needed to know for sure.

This information is made possible by the Adolescent Brain Cognitive DevelopmentSM Study. Youth participating in this study help scientists answer important questions that improve their understanding about youth experiences with substance use. These and other ABCD-supported studies let us learn more about how the brain develops, improving the health and well-being of youth now and for future generations. **Learn more:** abcdstudy.org/families

News Articles

Brain differences in childhood predict substance use later in life, study finds

www.psypost.org/neuroscience-brain-differences-in-childhood-predict-substance-use-in-later-life-study-finds

Adolescent cannabis use and psychosis: Study finds shared risk factors and self-medication patterns

www.psypost.org/adolescent-cannabis-use-and-psychosis-study-finds-shared-risk-factors-and-self-medication-patterns

Early substance use linked to brain structure differences in teens

<https://neurosciencenews.com/teen-brain-addiction-28290>

Researchers uncover link between caffeinated soda consumption and alcohol sipping in children

www.psypost.org/researchers-uncover-link-between-caffeinated-soda-consumption-and-alcohol-sipping-in-children

Study of pre-teens yields surprises about alcohol, tobacco, and marijuana

www.michiganmedicine.org/health-lab/study-pre-teens-yields-surprises-about-alcohol-tobacco-and-marijuana

References

Adams F, Ferster KS, Morris LS, Potenza MN, Ivanov I, Parvaz MA. Longitudinal tracking of alcohol expectancies and their associations with impulsivity in alcohol naïve youth in the Adolescent Brain Cognitive Development (ABCD) Study. *Drug and Alcohol Dependence Reports*. 2024;10:12:100271. <https://pubmed.ncbi.nlm.nih.gov/39262669>

Centers for Disease Control and Prevention (CDC). *About Cannabis*. 2024. <https://www.cdc.gov/cannabis/about/index.html>

Centers for Disease Control and Prevention (CDC). *About E-Cigarettes (Vapes)*. 2024. <https://www.cdc.gov/tobacco/e-cigarettes/about.html>

Centers for Disease Control and Prevention (CDC). *About Underage Drinking*. 2024. <https://www.cdc.gov/alcohol/underage-drinking/index.html>

Centers for Disease Control and Prevention (CDC). *Understanding Your Risk for Cannabis Use Disorder*. 2024. <https://www.cdc.gov/cannabis/health-effects/cannabis-use-disorder.html>

Centers for Disease Control and Prevention (CDC). 2023 Youth Risk Behavior Survey Data. 2024. <https://www.cdc.gov/yrbs/index.html>

Dai HD, Doucet GE, Wang Y, Puga T, Samson K, Xiao P, & Khan AS. Longitudinal assessments of neurocognitive performance and brain structure associated with initiation of tobacco use in children, 2016 to 2021. *JAMA Network Open*. 2022;5(8):e2225991. <https://pubmed.ncbi.nlm.nih.gov/35947383>

Dai HD, Pierce J, Beseler C, Abadi A, Zoucha K, Johnson R, Buckley J, & Ramos AK. Hierarchical modeling of psychosocial, parental, and environmental factors for susceptibility to tobacco product use in 9-10-year-old children. *Journal of Adolescent Health*. 2023;72(2):267-276. <https://pubmed.ncbi.nlm.nih.gov/36424333>

Doran N, Gonzalez MR, Courtney KE, Wade NE, Pelham W, Patel H, Roesch S, & Jacobus J. Social cognitive influences associated with susceptibility to nicotine and tobacco use in youth in the ABCD Study. *Journal of Studies on Alcohol and Drugs*. 2025;86(4):521-529. <https://pubmed.ncbi.nlm.nih.gov/39404167>

Evans J, Richards JR, & Battisi AS. *Caffeine*. [Updated 2024 May 29]. In: StatPearls [Internet]. <https://www.ncbi.nlm.nih.gov/books/NBK519490>

Ferariu A, Chang H, Taylor A, & Zhang F. Alcohol sipping patterns, personality, and psychopathology in children: Moderating effects of dorsal anterior cingulate cortex (dACC) activation. *Alcohol, Clinical & Experimental Research*. 2024;48(8):1492-1506. <https://pubmed.ncbi.nlm.nih.gov/38890123>

Hammond CJ, Chaney A, Hendrickson B, & Sharma P. Cannabis use among U.S. adolescents in the era of marijuana legalization: A review of changing use patterns, comorbidity, and health correlates. *International Review of Psychiatry*. 2020;32(3):221-234. <https://pubmed.ncbi.nlm.nih.gov/32026735>

Johnson EC, Demontis D, Thorgeirsson TE, Walters RK, Polimanti R, Hatoum AS, Sanchez-Roige S, Paul SE, Wendt FR, Clarke TK, Lai D, Reginsson GW, Zhou H, He J, Baranger DAA, Gudbjartsson DF, Wedow R, Adkins DE, Adkins AE, Alexander J ... Agrawal A. A large-scale genome-wide association study meta-analysis of cannabis use disorder. *The Lancet. Psychiatry*. 2020;7(12):1032-1045. <https://pubmed.ncbi.nlm.nih.gov/33096046>

Johnson EC, Paul SE, Baranger DAA, Hatoum AS, Colbert SMC, Lin S, Wolff R, Gorelik AJ, Hansen I, Karcher NR, Bogdan R, Agrawal A. Characterizing alcohol expectancies in the ABCD Study: Associations with sociodemographic factors, the immediate social environment, and genetic propensities. *Behavior Genetics*. 2023;53(3):265-278. <https://pubmed.ncbi.nlm.nih.gov/36662388>

Karcher NR, Paul SE, Johnson EC, Hatoum AS, Baranger DAA, Agrawal A, Thompson WK, Barch DM, & Bogdan R. Psychotic-like experiences and polygenic liability in the ABCD Study. *Biological Psychiatry: Cognitive Neuroscience and Neuroimaging*. 2022;7(1):45-55. <https://pubmed.ncbi.nlm.nih.gov/34271214>

Kwon M, Kim H, Yang J, Lee Y, Hur JK, Lee TH, Bjork JM, & Ahn WY. Caffeinated soda intake in children is associated with neurobehavioral risk factors for substance misuse. *Substance Use & Misuse*. 2024;59(1):79-89. <https://pubmed.ncbi.nlm.nih.gov/37936270>

Miller AP, Baranger DAA, Paul SE, Hatoum AS, Rogers C, Bogdan R, Agrawal A. Characteristics associated with cannabis use initiation by late childhood and early adolescence in the Adolescent Brain Cognitive Development (ABCD) Study. *JAMA Pediatrics*. 2023;177(8):861-863. <https://pubmed.ncbi.nlm.nih.gov/37358866>

Murphy MA, Dufour SC, Gray JC. The association between child alcohol sipping and alcohol expectancies in the ABCD Study. *Drug and Alcohol Dependence*. 2021;221:108624. <https://pubmed.ncbi.nlm.nih.gov/33676072>

National Cancer Institute. *Dictionary of Cancer Terms*. Central nervous system stimulant. <https://www.cancer.gov/publications/dictionaries/cancer-terms/def/central-nervous-system-stimulant>

References (cont.)

- National Institute of Mental Health. *Understanding Psychosis*. <https://www.nimh.nih.gov/health/publications/understanding-psychosis>
- National Institute on Drug Abuse. *Cannabis (Marijuana)*. <https://nida.nih.gov/research-topics/cannabis-marijuana>
- National Institute on Drug Abuse. *Vaping Devices (Electronic Cigarettes) DrugFacts*. <https://nida.nih.gov/publications/drugfacts/vaping-devices-electronic-cigarettes>
- Osborne KJ, Barch DM, Jackson JJ, & Karcher NR. Psychosis spectrum symptoms before and after adolescent cannabis use initiation. *JAMA Psychiatry*. 2025;82(2):181-190. <https://pubmed.ncbi.nlm.nih.gov/39504015>
- Pelham WE III, Tapert SF, Gonzalez MR, Ahiarakwe U, Patel H, Davis IS, Meruelo AD, Van Rinsveld AM, Marshall AT, Dick AS, Guillaume M, Dowling GJ, Baskin-Sommers A, & Brown SA. How does parental monitoring reduce adolescent substance use? Preliminary tests of two potential mechanisms. *Journal of Studies on Alcohol and Drugs*. 2024;85(3):389-394. <https://pubmed.ncbi.nlm.nih.gov/38227391>
- Pelham WE III, Tapert SF, Gonzalez MR, Wade NE, Lisdahl KM, Guillaume M, Marshall AT, Van Rinsveld AM, Dick AS, Baker FC, Breslin FJ, Baskin-Sommers A, Sheth CS, & Brown SA. Parental knowledge/monitoring and adolescent substance use: A causal relationship? *Health Psychology*. 2023;42(12):913-923. <https://pubmed.ncbi.nlm.nih.gov/36355697>
- Rothenberg WA, Sternberg A, Blake A, Waddell J, Chassin L, & Hussong A. Identifying adolescent protective factors that disrupt the intergenerational transmission of cannabis use and disorder. *Psychology of Addictive Behaviors*. 2021;34(8):864-876. <https://pubmed.ncbi.nlm.nih.gov/31524418>
- Sartor CE, Latendresse SJ, Jackson KM, Steers MN, Lipperman-Kreda S, Slade T, & Chung T. Parents' perspectives and behaviors regarding their child's access to alcohol: Variation by race/ethnicity, socioeconomic status, and neighborhood. *Alcohol, Clinical and Experimental Research*. 2024;49(1):234-243. <https://pubmed.ncbi.nlm.nih.gov/39701594>

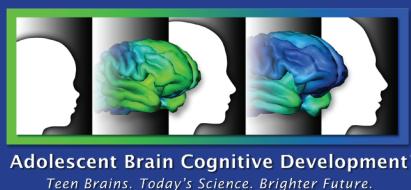
* Substance Abuse and Mental Health Services Administration. National Survey on Drug Use and Health. 2024 National Survey on Drug Use and Health (NSDUH) Releases. <https://www.samhsa.gov/data/data-we-collect/nsduh-national-survey-drug-use-and-health/national-releases/2024>

U.S. Department of Health and Human Services. *The Health Consequences of Smoking - 50 Years of Progress. A Report of the Surgeon General*. 2014. Atlanta, GA: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health. <https://www.ncbi.nlm.nih.gov/books/NBK179276>

U.S. Food and Drug Administration. Annual National Youth Tobacco Survey. 2024. <https://www.fda.gov/tobacco-products/youth-and-tobacco/results-annual-national-youth-tobacco-survey>

U.S. Food and Drug Administration. *Vaping: Facts About E-Cigarettes*. <https://www.fda.gov/media/159410/download>

Wade NE, Palmer CE, Gonzalez MR, Wallace AL, Infante MA, Tapert SF, Jacobus J, & Bagot KS. Risk factors associated with curiosity about alcohol use in the ABCD cohort. *Alcohol*. 2021;92:11-19. <https://pubmed.ncbi.nlm.nih.gov/33434614>


Watts AL, Wood PK, Jackson KM, Lisdahl KM, Heitzeg MM, Gonzalez R, Tapert SF, Barch DM, & Sher KJ. Incipient alcohol use in childhood: Early alcohol sipping and its relations with psychopathology and personality. *Development and Psychopathology*. 2021;33(4):1338-1350. <https://pubmed.ncbi.nlm.nih.gov/32522303>

Watts AL, Doss MI, Bernard DL, & Sher KJ. Psychopathology as dynamic markers of alcohol initiation across development: A three-year longitudinal examination. *Development and Psychopathology*. 2024;36(2):919-928. <https://pubmed.ncbi.nlm.nih.gov/36939078>

Wojciechowski T. Understanding time to vaping onset in childhood and adolescence: A dual systems model approach. *Drug and Alcohol Dependence*. 2025;268:112575. <https://pubmed.ncbi.nlm.nih.gov/39914190>

Zhang H, Lee ZX, & Qiu A. Caffeine intake and cognitive functions in children. *Psychopharmacology*. 2020;237(10):3109-3116. <https://pubmed.ncbi.nlm.nih.gov/32601990>

Zucker RA, Gonzalez R, Feldstein Ewing SW, Paulus MP, Arroyo J, Fuligni A, Sheffield Morris, A, Sanchez M, & Wills, T. (2018). Assessment of culture and environment in the Adolescent Brain and Cognitive Development Study: Rationale, description of measures, and early data. *Developmental Cognitive Neuroscience*. 2018;32:107-120. <https://pubmed.ncbi.nlm.nih.gov/2962733>

